Mirror For Philips TV 2.1.2 ((TOP))
Download >> https://urlca.com/2t1Jm1
The OLED+ 934 is rather different. The screen comes with an integrated soundbar designed by long term sonic collaborator Bowers & Wilkins. Boasting an upfiring driver array, Philips describes this Dolby Atmos execution as 2.1.2, but that only tells part of the story...
Originally the kinescope was used to record the image from a television display to film, synchronized to the TV scan rate. This could then be re-played directly into a video camera for re-display.[3] Non-live programming could also be filmed using the same cameras, edited mechanically as normal, and then played back for TV. As the film was run at the same speed as the television, the flickering was eliminated. Various displays, including projectors for these "video rate films", slide projectors and film cameras were often combined into a "film chain", allowing the broadcaster to cue up various forms of media and switch between them by moving a mirror or prism. Color was supported by using a multi-tube video camera, prisms, and filters to separate the original color signal and feed the red, green and blue to individual tubes.
In a flying spot scanner (FSS) or cathode-ray tube (CRT) telecine, a pixel-sized light beam is projected through exposed and developed motion picture film (either negative or positive) and collected by a special type of photo-electric cell known as a photomultiplier which converts the light into an electrical signal. The beam of light "scans" across the film image from left to right to record the horizontal frame information. Vertical scanning of the frame is then accomplished by moving the film past the CRT beam. In a color telecine the light from the CRT passes through the film and is separated by dichroic mirrors and filters into red, green and blue bands. Photomultiplier tubes or avalanche photodiodes convert the light into separate red, green and blue electrical signals for further electronic processing. This can be accomplished in real time, 24 frames per second (or in some cases faster). Rank Precision-Cintel introduced the "Mark" series of FSS telecines. During this time advances were also made in CRTs, with increased light output producing a better signal-to-noise ratio and so allowing negative film to be used.
Philips-BTS eventually evolved the FDL 60 into the FDL 90 (1989) / Quadra (1993). In 1996 Philips, working with Kodak, introduced the Spirit DataCine (SDC 2000), which was capable of scanning the film image at HDTV resolutions and approaching 2K (1920 Luminance and 960 Chrominace RGB) × 1556 RGB. With the data option the Spirit DataCine can be used as a motion picture film scanner outputting 2K DPX data files as 2048 × 1556 RGB. In 2000 Philips introduced the Shadow Telecine (STE), a low cost version of the Spirit with no Kodak parts. The Spirit DataCine, Cintel's C-Reality and ITK's Millennium opened the door to the technology of digital intermediates, wherein telecine tools were not just used for video outputs, but could now be used for high-resolution data that would later be recorded back out to film.[10] The DFT Digital Film Technology, formerly Grass Valley Spirit 4K/2K/HD (2004) replaced the Spirit 1 Datacine and uses both 2K and 4K line array CCDs. (Note: the SDC-2000 did not use a color prisms and/or dichroic mirrors.) DFT revealed its new scanner at the 2009 NAB Show, Scanity.[13] The Scanity uses time delay integration (TDI) sensor technology for extremely fast and sensitive film scans. High speed scanning 15 frame/s @ 4K; 25 frame/s @ 2K; 44 frame/s @ 1K. 2b1af7f3a8